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ASPECTS OF MODEL SELECTIGN IN

MULTIVARIATE ANALYSES

1. Introduction

Issues of rmdel selection arise in many statistical problems that deal

with a large number of observed var-iables. Some of the more commonly encoun-

tered problems involve use of multiple regression techniques, where it is of-

ten desired to find a relatively simple function that models some underlying

pfienomenon. Many statistical package progrms (BMDP, SAS, SPSS, etc.) contain

a nunber cf subset selection algorithms (e.g., forward and backwards stepwise

methods) for this purpcse. There is a good deal of literature on the subject

of choosing “the” algorithm that will produce a “best” model, but much less

has been done concerning

This is especially true

the rmdel chosen.

roper interpretation of the selected fitted equation.

n regard to as~essment of the predictive ability of

Similar situations accompany other types of problems. Discriminant anal-

,ysis is in many ways like multiple regression: a goal is to obtain a discrimi-

nant function to serve as a basis for cl~ssification of .“future” objects into

one of a number of groups. The choice of a specific discrimindnt function to

be used and estimation of its associated misclassification prob~l~ilities ,]re

issues that resemble model selection and assessment in Iliultipl(!reyreszio)],

Still other types of statistical problems entlliI reductiull of d Idr!l?

number of varial~les to a more manageable collection. onc exmple 01’ this is

the study of sensitivity analysis for reactor simulation codes. III Soln(?

cases, there are hundreds of input vari~hles of interest, wltl dl’vl?lopmerltot

an understandable explanation of the systeln requires IIIL)(I(:I IIlliI(lillgwith d!)

e,ye towards limiting the dimension of the input spacl?,

The purpose of this paper is to cxdmi’lc aspwks of vdridl)lc se!rctiol]

procedures, particula?l,y in term of intcrpretiflg the rusult ul>tainwl. Fl)l’

clarity of the presentation, the discussion is pursud~l in thu cmtl?xl ol”

wultiple regression.
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i. The Optimism Principle

A major tenet of conventional statistical folklore is that a model chosen

via some selection process provides a much

the data used in its derivation than it does

a similar fashion. One of the more eloquent

more “optimistic” expla

of other data that will

statements of this print’

“Testing the procedure on the data that gave it birth is

almost certain to overestimate performance, for the opti-

mizing process that chose it from among many possible pro-

cedures will have made the greatest use possible of any

and all idiosyncrasies of those particular data... As a

result, the procedure will likely work better for thesl.

dat~ than for almost any other data that will arise in

practice.” Mosteller and Tukey (1977), p. 37.

lation of

arise in
ple is

This doctrine appears to he hased on a long history of unfortunate experiences

encountered by statisticians.

The most important wordr in the ahovc quntation are “from among many pos-

sible procedures!;’ as the selection process plays a key role. Providing a

formal demonstration of this phenomenon for subset. selection procedures in

multiple r[’~lressionis not.difficult. Consid(?r the general lin~ar model

y ❑ xl{ + (! (?.1)
,.

Wher’(!

X is ar]n x p m,]trix of r.on~l.afitsof rank p< n,

Ii i s ,3 p-compor!(?n~”V(>CI,Or-of unknnwr) l)i]ranu’1.(?rs,

and C’q,((),(171) for (1?ur?known.
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The model (2.1) is called the “full model, ” and the possibility that some of

the components of B are zero is often erltertained, The purpose of subset se-

lection algorithms-is to extra~t d parsimonious fitted equation.

It is well known that the residual mean square from the least squares fit

te the full model,

“2
= y’ [l-X(X’X)-’ X’] y,/(n-p)

‘full - .

2is an unbiased estimator of u . The same does not hold for residual mean

squares from fitted models chosen by subset selection procedures. Suppose

that all 2P-1 “least squares subset fits are considered and the “oest” one IS

selected. If “best” is taken to mean the fit whose residual mean square is a

minim(lm cf chose obqerved, then

2 ‘2(1
< “fullmin --

for all values of y

where .1~in denotes the minimized value corresponding 10 Lil{!“best” Fit.
..,

is urlbiased for (l
(

‘ince “’Full .-
from (?.2) that ll~i,,is not.

ca5eI; the hiss can he substantial

Here ,l;?represents a basel

minimum ohtainahte SqL~r(:(lerror

over tl,e distribution of y, it i~ l)l)ViOU5
.-l .

Cll:(lrly II~in is “optimistic” and in SGIIIC

.

p-edict.or, Th~

of the Scl(?ctpllIII,)(IC1could

prl!dict much hctl:er tl)(lllIll’

Cvt?rlpos~ihlc?j.
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In short, the distribution function of Z(l) takes into account the fact that

z(l) is the smallest of the observed {Zi}. In multiple regression, if a

particular subset model is selected because it minimizes the observed value of

some criterion - such as a residual mean square, Cp statistic (Mallows,

1973), o~qPRESS statistic (Allen, 1971) - the distributional properties of the

observed optimized criterion rrust formally account foi”the selection process.

Unlike the theory of order statistics, however, exact distributional re-

sults are nearly impossible to obtain fotl nmdel selection in the multiple re-

gression framework. Nonetheless, simulation work has been pursued and Berk

(1978a) has found realistic examples where bids in residual mean squares frcm

fitted models chosen via stepwis~ algorithms exceeded 20% of the actual value

af U*. Many other statistics are similarly biased over the subset selection;

observed values of Cp and PRESS tend to be much lower than might otherwise

be expected (Berk, 1978b) while values of R2 are greatly inflat~d (Diehr and

Hoflin, 1974; Rencher anu Pun, 1980).

The magnitudes of the biases in the usual summary statistics depend on a

number of factors. The probiems seem to be most serious when:

1. The number of observations, n, is of moderat~ size

(say, less than

variables, p, is

lection problems,

ordinary so that

50) and the numl]er of independent

apprecia~le. For many variable se-

p of 10 or 20 is not out of the

“best” fit may be chosen from liter-

ally thousands (2P-I) of candidates. When this cle-

gree of choice in available, substantial optimism c~tl

bt’ induced,

2. Th~? number of oi]servatiorlsis small. !Icre a qood de~ll

of Variability exists in stcltistics stJch as residual

mean squares, and selecting thi? “best” from such ,]

class of it.ws can lead to optimism as well.
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TtIemain point to keep in mind is that imitation of standard statistical

techniques that assume the form of the model is “known” - as opposed to se-

lected - can lead to conclusions very much in error. For example, substitu-

tion Of ;~in into the usual formulas for confidence intervals is not justi-

fied theoretically and ensuing optimism can lead to a number of problems. In

some sense, application (well, abuse) of the standard methodology has failed

and a~ternatives must he considered.
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3. Predictive Ability of Regression Models

It is not difficult to obtain good assessments of the predictive ability

of fitted models that are the product of subset selection procedures. In or-

der to develop the ideas behind such assessments, it is necessary to first in-

troduce some notation.

Similar to the previous section, denote the general linear model

y=Xc+e
. -.

where X, B, and e are as in (2.1). Consider any subset selection method, such

as a forward stepwise algorithm. The method has the p:operty that givel] an

observed ~o, a

estimation. If

will be zero.

thus induces a

p-component vector 60 is produced for purposes of parameter
.

the full model is not selected, some of the components of GO

TRe distribution of y together with the selection algnrithm

distribution on Rp f~r th~ ensuing estimator ~. Assume the

i ]duced distribution is well enough behaved so that moments of ‘order twa exist

and it is possible to write

(3.1)

Given t!lis characterization of estimators produced by subset selection,

the predictive ability of the associated fitted model cdn be evaluated. sup-

pose xf i~ a known p-component vector and..

is an observation conforming to th~ structure of (2.1) atld independent of ;.

If the realized (y,X) is the product of some phy~;cal mechanism that has qen-

e~’ated the data, ‘(yf,xf ’) can he thought of G:; a “future observation” frgnl

the same mechanism. ihe predicted value of yf based on the selected model
A .

= :+iis yf - and the error of predi~tion is yf - yf.
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The predictive ability of the selected model is reflected by the distri-

bution of yf - ~f for different choices of ~fi A useful criterion for

evaluating predicticm ~s the mean squared error

MSE(xf) = E(yf-yf)2

An overall measure of predictive ability can be obtained by integrating the

mean squared error of prediction at xf with respect to a distribution F on

Rp for ~f. The integral

f XX’ dF ❑ C
Rp ‘-

where C is the matrix of expected cross products defines

IMSEF (B) = ~ MSE(~f) dF
Rp

‘ C(6-P~) + tr ~~C (3.2)❑ 02 + (E-J) . .

Here F may be taken to be any distribution on Rp, so that IMSEF(fi) loosely
.

denotes the predictive ability of the fitted model over the region of the

design space “highlighted” by F. Cf course, other types of a “loss function”

besides mean squared error could be consiriered and a similar development

pursued.

Expression (7.2) reflects two importmt aspects of prediction. The first

is that a “diminishing returns” effect sets in, and increasing the number of.
observations used to derive 6 past a certain point does very little to improve

predictive ability. This can be easily demonstrated in two simple examples.
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Example: Suppose {ui}, i=l,2,.., n, are iid N(P, U2) and it is

of interest to predict a “future” observatiorl u from the same

population. A

whose standard

G
-. 2
n

cormnon predictor for this case is ~n = ~ui/n,

error of predictim is

❑ u I+(l/n)

For n = 10 this standard error is 1.049u, while for n = 100 it

is 1.005 cr and declines only to 1.000 u as n approaches infini-

ty . The percentage reduction in the standard error due to in-

creasing n beyond 10 is quite small, and reflects that the com-

ponent of error due to prediction of the f’Jture very q~lickly

daninates the component of error due to estimation of the para-

meter p.

Example: In the general linear model (2.1), partitition

X ❑ [Xl X21 and B’ ❑ [~~ ~?] so that the model can be written

Consider the estimator

~/((xix,~lxif)
obtained by “underfitting” the Full model using ordinary least..
squares. Moments of ~u are well known and substitution int~

(3.2) gives

-:X1‘2+”2trc(X:X1)-’:
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where Ax = (X;X1)‘1X+X2 is the alias matrix for the design. The

three t~i’t?ls in IMSEF (~u) nave simple interpretations. The first, U2, can

be thought of as e:ror due solely to prediction of the “future” and can r,ever

be reduced by taking more observations. The second term,

is an average squared Dias and, when f32{ Cj,;-epres~nts a penalty for fitting

a
w.

model cf the wrong form. This term also does not decrease intrinsically

th sample size: for a “rioub’ed” data set of 2n observations,

())(*.X implies

x
AX* = Ax

and bias properties remair, identic~l ‘co those for the fit to n observations.

The third term of IMSEF (~u),

~2

()

tr C (XiX1)-l O = ~ Var (y’~u) dF

o 0, RF

is the component of error due to the

This term tends to dec?ine as l/n and in

the first two terms. It follows that

sitive to the magnitude of n.

vari,~bility in parameter estimation.

most cases is dominated by the sum of

IkiSEF (~u) is not particularly sen-

As fitted models that are the product of subse~ selection procedures are

quite difficult to evaluate theoretically, a rigorous demonstration of dlmln-
,.

ishing returns for them alonq the lines of the above examples. is not easy to

come by. However, there seems little reason to believe that the pr~rlictive

ability of such models behaves in a fundamentally different fashion this

regard.
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The second important aspect of prediction using regression fits in the.
dependence of IMSEF (~) on F. This phenomenon is apparent from inspection

of (3.2) and, crudely stated, means that fitted mod~ls predict better at some

values of ~f than at others. When the fitted model is of the wrong form,

this is especially true. One simple illustration is provided in Figure 1,

where the “true” model exhibits some curvature but the fitted model does not.

Effects of outliers and heteroscedasticity on fitted rmadels can also

fi.tteci model

f

“true” model

Y

—x
Slgure 1

exaggerate differences in predictive ability at different va;ues ot x-f“
This “localized” nature of prediction should be kept in mind in analysis of

many problems.
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4.

nbt

Analysis of Multiv~riate Data

Often in the analysis of large data sets, the “right” way to proceed is

immediately apparent. Consequently, some aspects of model selection or

so-called exploratory data analysis inevitably arise. competing models may be

terrlporarilyentertained and the final choice OF a predictive equation (Or dis-

criminant Function or whatever) is influenced by many factors, including the

personal experiences and prejudices OF the people involved, This state of

affairs is not likely to change in the near future.

It is very important to develop the underpinnings of proper assessment of

models produced by sucfl selection procedures. The main point to keep in mind

in this regard is the optimism principle: when a model is chosen because of

qualities exhibited with respect to a particular set of data, its “explana-

tion” of future observations that arise in a similar fashion will almost cer-

tainly not be as good as would naively be expected based on the origifial datd.

As illustrated in the speciiic examples of jection 2, blind application of

ordinary statistical methods that fail to account for the selection process

can led.i t5 incorrect conclusions. Since it is usually impractical to attempt

derivation of a the~ry to rigorously handle the optimism illsuch analyses, al-

ternatives must be considered.

d concept can be adapted to deal With this problem, Basically,

,’111s the data into two portions (not necessarily of equal size)

L 10 [’11.~ina fitted model. The selection can be applied to one

portion alone, al]d a:,-,esslllentcan be made using the other portion. For re-

gression problems, the gerleral strategy behind this approach is to take ddvan-

tage of the dimirlishing r~turns effect to aevelop “almost” as good a predictor

ft-oma portion of the data as would have been obtained using the complete set

and slinultaneously avoid the optimism principle by basing the assessment Gil

observations not used in the model selection. Ideas along these lines have

been proposed since the 1930’s - see Stone (1974) for a brief historical

acc~unt.
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Despite its early origins, the subject of cross-validation has not yet

been thoroughly examined. Specific details for implementation of a “split-

ting” strategy have not been laid out in detail, particularly in regard to

underlying theoretical justifications of the methods involved. Snee (1977)

has suggested using the DLJPLEX algorithm to determine the split and then Lak-

ing the observed man squared error of prediction of the “validation” portion

as an overall evaluation of the fitted model. Mosteller and Tuke,y (1977) have

proposed a three-way-split, using one portion of the data to divine the func-

tional form of the model, a second portion to estimate parameters, anJ J third

portion for assessment. Stiil nthers have simplistically suggested a pu:-ely

randan division of the data.

The principles behind splitting are not difficult to grasp. It is impor-

tant to maintain the integrity of the validation sample, so as to allow the

data to “play the role” c fhture ~bservations produced by the p}~!sical mecha-

nism uf interest. In tliisregard, it is presumed that the stated full model

is correct; otherwise it may not be possible to obtain a realistic evaluation

of predictive ability. For example, in an experiment where substantial day tu

day va~’ial.ionexists but the observed data are coi;ected from only onc day,

“actual variability” wollid likely be underestimated based on the observations

at hand.

When splitting a data set, the size of the validation po;tion does not

appear to be crucial (within broad limits) and prim~ril: should reflect senti-

ments concerning the importance of d~vr?loping a predictor relative to assess-

ing what has been developed. As for which observ~tions are placed into Lhe—.
rczpective portions, principles of sampling apply. Some have suggested a ran-

dun division, but because of the loc~lized nature of predicti~e ~llility W1

attempt should be made to assure lhat data from all regions uI’ till’dcsigl]

space are represented in h~JLl~portions. Whcrr the number of vdridbltis is

large, “gaps” can edSi[y reSUlt in SplitS determined by a simple rdndom sMl-

pling procedure. This motivdtes an approach simil~r in nature to stralifit>(l

sampling, where the strata here loosely correspond tu different regions uf the

design space. The DUPLEX ~lgorithm incorporates this notion, an(jukilcr IIIPLll-

OCISalso suggest themselves.
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Using the validation sample (however chosen) is fairly straightforward.

The main point to k~p in mind is that predictive ability often differs de-

pending on the region of interest in the design space. This is particularly

true when the fitted model is not of the correct form. This motivates a

“localized” use of validation residuals for ~scessment, tt-,oughfor i~ojt pur-

poses an examination af plots of these residuals can be the best w~y to ac-

quire an understanding of the qualities of the model.
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5. Sumnary.—

Analysis of data sets that involve “large numbers of variables usually en-

tails some type of model fitting and data reduction. In regression problems,

a fitted model that is obtained by a selection process can be difficult to

evaluate because of optiinism induced by the choice mechanism. Problems in

areas such as discriminant analysis, calibration, and the like often lead to

similar difficulties. The preceding sections reviewed some of the general

ideas behind assessment of regression-type predictors and illustrated how they

can be easily incorporated into a standard data analysis.
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